Voltage-dependent effects of opioid peptides on hippocampal CA3 pyramidal neurons in vitro.

نویسندگان

  • S D Moore
  • S G Madamba
  • P Schweitzer
  • G R Siggins
چکیده

Opioid peptides, and especially the dynorphins, have been localized to several circuits in the CA3 hippocampal region, yet electrophysiological studies often find mixed effects of opiates on the excitability of CA3 neurons. Reasoning that these mixed effects might involve voltage-dependent actions, we tested the effect of several opiates on CA3 pyramidal neurons using single-electrode voltage-clamp recording in a slice preparation of rat hippocampus. In most CA3 neurons, the voltage-dependent K+ current known as the M-current (IM) was uniquely sensitive to the opioid peptides, with the direction of response dependent upon the opiate type and concentration. Thus, an opiate selective for kappa receptors, U-50,488H, significantly augmented IM. The kappa-selective agonists dynorphin A and dynorphin B, which exist in mossy fiber afferents to CA3 pyramidal neurons, also markedly augmented IM at low concentrations (20-100 nM). By contrast, dynorphin A at higher concentrations (1-1.5 microM) often reduced IM. Similarly, several opiates [e.g., D-Ala2,D-Leu5-enkephalin: (DADL), [D-Pen2,5]-enkephalin (DPDPE)] known to act on the delta receptor subtypes reduced the M-current, with partial reversal of this effect by naloxone. Neither the selective mu-receptor agonist [D-Ala2, NMe-Phe4, Gly-ol]-enkephalin (DAMGO) nor the nonopioid fragment of dynorphin, des-Tyr-dynorphin, consistently altered IM. These opiate effects on IM were accompanied by changes in conductance and holding current consistent with their respective effects on IM. Dynorphin A did not measurably affect the Q-current, a conductance known to contribute to inward rectification in hippocampal pyramidal neurons. The opiate effects on IM were not altered by pretreatment with Cs+ (which blocks IQ) or Ca2+ channel blockers. The opposing effects of the dynorphins (both A and B) and DADL on IM were antagonized by naloxone (1-3 microM), and the dynorphin-induced augmentations of IM were usually reversed by the kappa receptor antagonist norbinaltorphimine. These results suggest that the opiates can have opposing effects on the same voltage-dependent K+ channel type (the M channel) in the rat CA3 pyramidal neuron, with the direction of the response depending on which receptor subtype is activated. These data not only help explain the mixed effects of opiates seen in other studies, but also suggest a potential postsynaptic function for the endogenous opiates contained in the CA3 mossy fibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynorphin selectively augments the M-current in hippocampal CA1 neurons by an opiate receptor mechanism.

Most electrophysiological studies of opioids on hippocampal principal neurons have found indirect actions, usually through interneurons. However, our laboratory recently found reciprocal alteration of the voltage-dependent K(+) current, known as the M-current (I(M)), by kappa and delta opioid agonists in CA3 pyramidal neurons. Recent ultrastructural studies have revealed postsynaptic delta opia...

متن کامل

Effects of Ginkgo biloba extract on the structure of Cornu Ammonis in aged rat: A morphometric study

Objective(s):Growing evidence indicates that extract of Ginkgo biloba (EGb) attenuates hippocampal-dependent memory deficit in aged individuals; however, very little is known about the effect of EGb on the structure of hippocampus. Therefore we examined the EGb-induced morphological changes of the Cornu Ammonis (CA) region in aged rats. Materials and Methods: Sixteen aged male Wistar rats, 24 ...

متن کامل

Blockade of U50488H on potassium currents of acutely isolated mouse hippocampal CA3 pyramidal neurons.

The actions of the opioid agonist U50488H on IA and IK were examined in acutely isolated mouse hippocampal CA3 pyramidal neurons using the whole-cell patch clamp technique. U50488H caused a concentration dependent, rapidly developing and reversible inhibition of voltage-activated IA and IK. The inhibitory actions were still observed in the presence of 30 microM naloxone or 5 microM nor-binaltor...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 1994